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Abstract

This thesis investigates how to effectively schedule multiple examinations in the prostate

cancer pathway under different hospital environments. This work is important as an

effective scheduling for examinations is crucial to patients in the cancer pathway and it

may be largely affected by the uncertainties, such as crowdedness and urgency level, in

the complex hospital environment. Therefore, a comprehensive software framework,

called SlotRkr, is proposed as a solution to address the multiple examinations scheduling

problem. It comprises two components that provide scheduling and simulating

functionalities. The experiments in this thesis investigate two main challenges faced by

most specialty clinics when time-based performance metrics are considered:

1. The most efficient scheduling method with optimal performance that applied in

current hospital environment;

2. The most robust scheduling method that can dynamically adapted to changing

environment.

Scheduling Model
The first component in SlotRkr is a scheduling model aiming at creating effective

schedule plan upon patient’s arrival for One-Stop-Clinic in The Princess Alexandra

Hospital (PAH). In the complex clinical environment, the interactions between patients,

multiple examinations providers and scheduler are firstly modelled by multi-agent

approach. Then, a heuristic method is developed to provide an optimal solution based on

the future information obtained in advanced. Although this method is not realistic in

practice, it provides idea to develop a novel cost-based scheduling method that

dynamically adapts to the changing environment. For comparison, the currently used

scheduling method, first-come-first-serve, is also included in this model.

Simulation Model
The second component in SlotRkr constructs mathematical simulation model to simulate

the patients’ arrival streams to the One-Stop-Clinic. The data provided by The Princess

Alexandra Hospital (PAH) is first re-sampled using bootstrapping technique and further
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classified according to patients’ status. With a 95% confidence level of Chi-Square

Goodness-Of-Fit test, patients’ arrival process can be modelled by Poisson distribution

and the probability of patients’ random status is modelled by beta distribution. By

passing different parameter to these distributions, the simulation model can be configured

to simulate different crowdedness and urgency level in the hospital environment.

Experiments
A series of theoretical experiments are carried out to analyse how SlotRkr tackles the

main challenges stated before. There are in total 21 experimental units in the

experiments. In each unit, different configuration is passed to the simulation model to

generate patient streams and the heuristic, cost-based and first-come-first-serve

scheduling method are applied to schedule such streams. The results of experiments are

examined with respects to three hypotheses and it shows that first-come-first-serve is

suggested to apply in current hospital environment while cost-based scheduling method is

more robust as the hospital environment changes.

Contributions to Science:
The major contribution of this thesis is to develop a comprehensive software framework

to address the multiple examinations scheduling problem. The framework consists of

i. a computer-based simulation model that captures the randomness of patients’

arrival process and their corresponding categories;

ii. a multi-agent system that models the patients and departments in hospitals and

create effective schedule plans by the novel method SlotRkr;

The framework firstly contributes to the existing literature in the way that it models the

hospitals environment. The number of patients per week is measured by ”crowdedness”

level in experimental settings and controlled by parameter in a Poisson distribution; the

average urgency level of patients’ scheduling requests is controlled by the parameter of

the beta distribution for a certain group. In this way, the simulation process is

interpretable and repeatable.

Furthermore, the novel cost-based scheduling method is intuitive, robust and easy to

implement. It considers different performance metrics in the cost function and assigns

different weights to them to represent a trade-off between them, which can be further

3



adjusted by users for to address different problem. I also introduce a penalty component

in the cost function to penalise those schedules that assign early timeslots to less urgent

patients. It is similar to humans’ consideration when making schedule while it is seldom

modelled in previous literature.
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Chapter 1

Introduction

This chapter presents an overview of the thesis. First, the background of problem inves-

tigates in this thesis is briefly introduced. In section 1.2, the motivation and the main

challenges of this research are explained. Furthermore, the objectives are claimed in sec-

tion 1.3. Finally, the structure of the whole thesis is given in section 1.4.

1.1 Problem Background

Prostate cancer is the most common cancer affecting men in United Kingdom, with over

40,000 new cases diagnosed every year [18]. According to [17], it is causing more death due

to its stable mortality rate and increasing incidence rate. The prevalence of prostate cancer

is not only affecting patients’ life, but also has a negative social impact regrading to huge

medical expenditure and possible pressure given by family members and friends [62]. In

order to mitigate these undesired effects, nationally agreed and clinically endorsed pathway

is accepted in prostate cancer system.

Clinical pathways (or critical pathways) are structured multidisciplinary plans that

describe the sequences and timing of activities that hospital staff provide to patients [43].

The whole prostate cancer pathway can be divided into three phases: the diagnostic phase,

the treatment phase and the support phase. Diagnostic pathways illustrate how timely and

effective care can be provided to patients presenting with cancer symptoms. Treatment

pathway is a tailored treatment plan for every men with detailed information about the

treatments available for the stage of their disease, the side effects and the outcomes of
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each treatments. Support pathway aims at delivering good supportive care that ‘better

understand the needs of those living with cancer and develop models of care that meet

their needs” [49].

In this thesis, a diagnostic prostate cancer pathway is studied in a speciality clinic,

called “One-Stop-Clinic” (OSC) in The Princess Alexandra Hospital (PAH). One of the

essential components of pathway is the time-line, which consists of possible activities dur-

ing a pathway along with the corresponding due dates. As shown in Fig.1.1, there are five

activities included in the diagnostic pathway. The official due date set by NHS for each

activity is called “Maximal acceptance” due date, which is demonstrated as the time-line

at the top of the figure, while the “Good practice” time-line provided by PAH is shorter,

which is shown at the bottom of the figure. Each activity is briefly described below.

Activity 1: Urgent GP Referral

Before patients being referral to the local hospital, they will receive a pre-test on GP.

According to the pre- test results, they are further divided into two types: urgent patients

and regular patients. Only urgent referrals are accepted by OSC while regular patients who

have lower risk of having prostate cancer are referred to other clinic. When referrals are

accepted by OSC, they will enter the prostate cancer pathway and this date is indicated

as ”DAY0”.

Activity 2: Clinical assessment

OSC provides ”Fast Track (F/T)” slots for urgent referrals to have their first appointment

with urologists, which is called “clinical assessment”. The assessment lasts about 20 min-

utes and patients may get examinations referral afterwards. Patients are encourage to visit

the OSC within 7 days after they got GP referral.

Activity 3: MRI scan

After clinical assessments, most patients should take two examinations sequentially, which

help to detect the type and size of tumour. Magnetic resonance imaging (MRI) scan is the

first examination and it is suggested to happen at the same day or in the next day. Report

of such examination will be released at the same day.

Activity 4: TRUS biopsy test

With the MRI scan report, patients are allowed to take Transrectal ultasound (TRUS)
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Figure 1.1: Pathway time-line

biopsy test. Ac- cording to maximal acceptance standard, it should happen by ”DAY21”

in the pathway, while PAH’s good practice pursue to shorten it to 14 days because this

test has a longer period (3 to 7 days) for the report releasing, which may affect the later

activities.

Activity 5: MDT

When two examinations finish, decisions about patients will be dis- cussed in an Multi-

disciplinary Team (MDT) meeting. It is the mark of the end of diagnostic phase. The

total length of diagnosis phase is defined as the days between the referral date and MDT

date, which is suggested to be less than 31 days (maximal acceptance) or 21 days (good

practice).

1.2 Motivation

The main issue with current prostate cancer pathway is the inefficient delivery of some

intermediate activities, resulting in a deviation from original pathway [16]. As discussed

above, the activities before diagnosis include consultation, MRI scan and biopsies. Since

consultation date might be related to patients’ characteristics and external factors such as

weather and unanticipated events, which cannot be controlled by OSC, the possible solu-
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tion to mitigate this problem is to effectively schedule patients to the two examinations in

a way that most patients will not miss their diagnosis deadline. In this case, it is natural

to classified patients into groups with different urgency levels according to their arriving

days as the earlier they arrive for consultation, the more time will be left for them to

complete the rest examinations. Therefore, this problem can be treated as a multi-priority

multi-appointment scheduling problem for outpatients.

Operation Research (OR) has enjoyed a long tradition of addressing logistics healthcare

challenges, especially resource capacity planning and appointment scheduling issues [6].

Furthermore, the advanced study on variational inequalities and dynamic programming

allows OR technique to solve dynamic problems. One successful example of applying OR

technique to solve a multi-priority patient-scheduling problem can be review in [47]. With

the aim of reducing the accessing time to diagnosis, their model proved to be outstand-

ing regardless of the setting of clinics and size of hospitals. Nevertheless, lots of research

adopting methods such as Markov Decision Process (MDP) and Integer Linear Program-

ming (ILP) aim at solving the mismatch between static resource and dynamic patient flow

each day and they usually make schedule at the end of each day based on the collected

information during that day.

Even though the problem investigated in this thesis shares some common characteris-

tics with outpatient scheduling problem, such as a stochastic patient arrivals and different

levels of urgency of patients, there are some key differences:

• Patients need to have the date and time for later examination right after the consul-

tation slots, resulting in a real-time scheduling system, which means it is not possible

to wait for the accumulation of patients before generating a schedule;

• Outpatient scheduling problems usually consist of scheduling a single doctor ap-

pointment for a patient, which often has a stochastic duration. When follow-up

sessions exist, they may be scheduled on the fly [25]. However, prostate examina-

tions scheduling consists of booking several time slots of deterministic duration such

that consecutive session of the same patient are scheduled a pre-determined number

of days apart;

• There is a fixed sequences of examinations, which means patients need to finish the
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previous appointment before they can attend the next appointment. Thus, the local

performance of each examination should be considered.

These features make the problem not only hard to solve, but also hard to model. For

example, even in a simple scenario, solving a MDP or ILP requires one hour [13], which is

not suitable for the case in OSC where each scheduling decision should be made in a very

short time. Additionally, optimizing local performance is often complex. A department

receives appointment requests from outpatient departments with varying medical proper-

ties and urgencies. With a fixed resource capacity, appointments must be scheduled such

that for all urgency levels a satisfactory fraction of patients is scheduled on time. The

typical approach to this problem is to allocate parts of the resource capacity to each pa-

tient group. Allocating capacity specifically can indeed improve performance depending

on problem properties. However, due to fluctuations in patient arrivals, initial capacity

allocation can regularly mismatch current demands [57].

However, it is worthwhile to investigate a real-time scheduling approach to support the

examinations scheduling as it provides a series of benefits:

• Increased Efficiency The reason why OSC need real-time appointment schedules

is that there are a large number of examination slots and consultation slots available

on the same day, as the aim of OSC is to efficiently provide patients with all needed

care services on one day.

• Reduced anxiety OSC found out that patients with suspicious cancer are usually

anxiety about their future stages in hospital when they finish the consultation. If

they can know a blueprint that contains the exact date and time of all examinations

they need to take immediately, they may be less worried.

• Decreased pathway length With an effective scheduling system, the probability

of scheduling patients to the date that exceeds their diagnosis deadline will be de-

creased, resulting in a shorter pathway length for diagnosis phase, which means a

faster access to treatment and it is significant to cancer patients.

14



1.3 Objective

The research presented in this thesis focuses on developing and evaluating models and

algorithms used to automatically provide suspected prostate cancer patients with schedule

plan that consists of schedules for multiple examinations in prostate cancer pathway. The

main objectives of this thesis are:

By developing a comprehensive framework, patients random arrival process can be mod-

elled and effective schedule plan that consists of two schedule dates for two examinations

in the prostate cancer pathway can be create dynamically upon each patient’s arrival such

that the scheduling efficiency in the clinic can be improved in terms of the ratio of patients

who exceed their due date of finishing their pathway.

To achieve this objective, there are four main tasks for this research:

1. Review literatures that solve patient scheduling problem by different methodologies,

such as computer simulation, heuristics, Markov processes, mathematical program-

ming and queueing theory, so as to identify the advantage and limitations of each

method and select the methodology used in this thesis.

2. Analyse the data provided by PAH to identify hidden patterns of patients’ arrival

and their arriving status so as to construct mathematical model to simulate patients’

arrival process.

3. Develop robust methods capable of creating a real-time schedule in an acceptable

amount of time.

4. Analyse the performance of the developed methods by a detailed and well structured

set of experiments.
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1.4 Structure of this Thesis

Structure of this thesis is as follows,

• Chapter 2 examines different categories of patient scheduling problems. The majority

of the literature relevant for this work is discussed. Papers are classified according

to the methods used.

• Chapter 3 details the problem that currently faced by PAH and proposes the formal

solution to that problem. The experiments are carried out to test the solution and

the experimental result analysis is also given.

• Chapter 4 summaries this research and outlines possibilities for future work.

16



Chapter 2

Background and Literature Review

This chapter aims to deliver some background information of the prostate cancer system

and common techniques used in appointment scheduling (AS) system. In order to better

understand the available literature, a classification scheme based on the works by [21] is

presented. Section 2.1 describes a classification according to the environment the problem

deals with. Section 2.2 lists the most common characteristics in outpatient scheduling and

how they are more commonly found in each environment. The most common performance

measures are described in section 2.3 and common methods used to tackle outpatient

scheduling problems are introduced in section 2.4.

2.1 Outpatient Scheduling Environments

Outpatient scheduling systems can be classified according to the environment for which

they are designed. Three main types of scheduling environments that defined in [21] is

briefly introduced below while the problem focused in this thesis belongs to the second

category:

Primary care: Patients arrive to a clinic or hospital, usually to see a general practitioner

(GP).In the majority of environments, patients call in advance to schedule an appointment.

The scheduler then books a time and day for the patient’s appointment. There may also

be walk-in patients, who must be accommodated sometime during the day. Some of these

may be emergency or urgent patients and may need to be seen immediately.

Specialty care: Patients are usually referred from primary care to a specialty clinic
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in order to receive treatment specific to the patient’s diagnoses. Specialty clinics focus on

specific, often complex, diagnoses and treatments. For the majority of specialty clinics,

patients must be referred to them by a GP before they can ask for an appointment. Session

durations are usually deterministic in this environment. They may also have a large vari-

ation due to different diagnoses and, therefore, fixed length slots are not usually adopted.

Instead, each session is booked to use only the amount of time it requires.

Resources in specialty clinics are often very expensive, either in the form of equipment

and machinery, or in the form of specialised doctors. For this reason, achieving high levels

of utilisation in these environments is highly desired in order not to waste resource time.

Patients commonly have different levels of urgency, where normal patients can be sched-

uled well in advance and emergency or urgent patients can arrive with short notice and

need to be treated immediately. The main challenge in this environment usually resides in

reserving enough capacity for patients of high urgency, while maintaining a high utilisation

of the resources.

Elective surgeries: Scheduling of chosen and planned in advance surgery procedures

in operating rooms. The biggest difference between surgery scheduling and other schedul-

ing is that the duration of surgeries is not known a priori. Complications can occur during

surgery, which can greatly increase their duration. This stochastic duration with large vari-

ation makes surgery scheduling one of the most complex patient scheduling problems. [8]

and [39] present reviews of scheduling algorithms tailored for this environment. Also, surg-

eries require a greater variety of resources to be allocated to them when compared to the

primary and specialty care environments.

2.2 Factors in Outpatient Scheduling

In this section, five relevant factors that are encountered in appointment scheduling envi-

ronments are introduced. By identify these key factors, the modelling of the scheduling

problem in this thesis is briefly explained as well.

Operational planning involves the short-term decision making related to the execu-

tion of the healthcare delivery process. There are two types of planning: ”offline” and
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”online” which reflect the nature of a static and dynamic healthcare process, respectively.

i. offline operational planning concerns the in advance planning of operations. It

comprises the detailed coordination of the activities regarding current (elective) demand.

Examples of offline operational planning are: treatment selection, appointment scheduling,

nurse rostering, inventory replenishment ordering, and billing [25].

ii. online operational planning involves control mechanisms that deal with monitoring

the process and reacting to unforeseen or unanticipated events. Examples of online plan-

ning functions are: triaging, add-on scheduling of emergencies, replenishing depleted inven-

tories, rush ordering surgery instrument sterilization, handling billing complications [25].

Online literature includes patient scheduling [37] and (open) shop scheduling problems [1].

The more closely related problem of appointment scheduling and real-time capacity allo-

cation in an MRI setting was addressed by [20]. The use of approximate dynamic pro-

gramming to solve the problem of dynamically allocating diagnostic imaging resources to

multiple patient priority classes, in order to achieve targeted wait times was investigated

in [47].

Number of Services determines the number of service that patients are waiting for.

Almost all studies in the literature model a single-stage system where patients queue for

a single service. However, in our problem, patients are waiting for multiple examinations.

Thus, a multiple stage system is considered. A few simulation studies investigate clinic envi-

ronments where a patient may pass through facilities such as registration, pre-examination,

post-examination, x-ray, laboratory, checkout, etc. [12,50,54]. In such multi-stage models,

the patient flow (transition) probabilities associated with each facility need to be specified

for Markov Process modeling.

Scheduling combination appointments involves complex local scheduling. Work such

as [47] discuss such problems. Also, in [20] the authors discuss a local profit maximization

problem of a MRI scheduling problem for three classes of patients. Their more abstract

model requires setting specific revenue and penalty functions, for which the authors iden-

tify properties of an optimal solutions. The authors focus on local performance and do not

consider a trade-off against patient preferences.

A similar research is conducted in [58], where a new multi-agent Pareto-improvement

appointment exchanging algorithm is developed. This algorithm starts from a simple
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schedule such as first-come-first-serve on several diagnostic resources and interchanges the

existing appointments that have been scheduled using single-resource algorithms by us-

ing different agents (patient agents, resource agents, staff agents) to improve the existing

schedules [40].

The Arrival Process describes several arrival characteristics of patients. According

to [9], it consists of the following factors, which affect appointment system performance.

Each factor and related literature is described below to introduce the problem setting of

this thesis.

i. Unpunctuality of patients can be defined as the difference between a patient’s ap-

pointment time and actual arrival time. Lots of research focus on the same day unpunctu-

ality. For example, [3,7,19,32,36,60,61] conduct research and empirical evidence suggests

that patients arrive early more often than late. However, in this problem, the same day

unpunctuality is not considered due to the specialty of OSC clinic. It receive outpatients’

consultation appointment only on Tuesday and the unpunctuality remains in the weekly

demand. It can also be treated as ”no-shows” in current week, which is described below.

Some authors use independent random variable with a certain limit on maximum lateness

to model patients’ lateness [42] while others use fitted theoretical probability distributions

to empirically derived histograms of patient arrival times relative to their appointment

to model that [12, 19, 53]. In either ways, it is assumed that patients’ unpunctuality is

independent of their scheduled appointment times.

ii. Presence of no-shows is moderately studied in the literature using no-show proba-

bilities (p) that range from 5 to 30 percent. It is considered to affects the performance and

the choice of an AS in lots of research [23]. Some focus on the study of the possible variables

(such as age, socioeconomic level, etc.) that might affect this patient attendance [15] and

some focus on finding the optimal number of patients to overbook in a day to reduce the

impact of no-shows [31,33,34,44]. In this problem, however, no-shows is not included in the

environment factors. The reason is the the appointment book by GP has no specific days,

means that patients can come and visit the clinic whenever they have the appointment [55].

iii. Presence of walk-ins (regular and emergency) is neglected in most studies as well

as in this thesis. In the U.K., hospital clinics are primarily used for consultation services

for patients referred to them by the general practitioner outside the hospital, and walk-ins

are rarely accepted [9].
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Service Times can be defined as the sum of all the times a patient is claiming the doctor’s

attention, preventing him/her from seeing other patients [4]. The majority of the stud-

ies assume patients are homogeneous for scheduling purposes, and use independently and

identically distributed (i.i.d.) service times for all patients. Other studies that consider

AS with unique patient classes model independently and distinctly distributed (i.d.d.) ser-

vice times. The general assumption of independence between the arrival and the service

patterns may be questionable. In practice, doctors may increase their service rate, if only

subconsciously, during peak hours knowing that there are many patients waiting. This is

observed to be the case in a number of studies [4, 52]; ; Rising et al. 1973; Babes and

Sarma 1991).

In this thesis, the service time for each patient is considered to be fixed and indepen-

dent. There is a fixed length of each examination allocated to each patient. Even though

the service time may varies from patient to patient, it is assumed that all the allocated

services within one day are ought to be finished. Therefore, the modelling of service time

is not the main point here.

Queue Discipline is also regarded as the scheduling method. Almost in all studies,

it is assumed that arriving patients are served on a first-come, first-served (FCFS) basis.

Given punctual patients, this queue discipline is identical to serving patients in the order

of their appointment times. However, unpunctuality may cause changes in the actual order

of seeing patients, as doctors would not keep idle waiting for the next appointment in the

presence of other waiting patients.

In OSC, patients have their urgent levels based on their arriving days. Therefore, a

priority rule is used in the scheduling method to determine the most suitable time slots for

each patient according to their urgency level. The general case, which is defined in [12,51],

states that the first priority is given to emergencies, followed by second consultations, then

scheduled patients; the lowest priority is given to walk-ins that are seen on a FCFS basis.

2.3 Performance Measures

There are many possible performance measures used in the literature to evaluate appoint-

ment systems. Most of them use a function of the time patients spend waiting for their
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appointment or of the time doctors remain idle. Five main types of performance measures

are enumerated by [9] and detailed below:

Time-based measures cover mainly the waiting time of patients and the idle and over-

time of doctors and resources. Patient waiting time can be further classified as indirect (or

virtual), defined as the time between the request for an appointment and the time sched-

uled for the appointment, or direct (or captive), defined as the time between the scheduled

time of the appointment and the time the consultation actually starts. In situations where

direct waiting time is calculated and the arrival time of patients is also considered, a com-

mon approach is to use the “true” waiting time, defined as the difference from the time the

consultation starts to the latest time between the arrival of the patient and the scheduled

appointment time. Idle time can be defined as the amount of time a resource is available

but not used. Overtime can be seen as the extra time after normal closing hours that a

resource is kept busy.

Cost-based measures are generally a linear mapping of the time-based measures to

monetary cost. However, it should be noted that a schedule where many patients have

small waiting times may be better than a schedule where one patient has excessive wait-

ing, even if the total waiting time in both schedules is the same [32]. When considering

more than one performance measure, it is usually enough to establish a relationship be-

tween the costs of each measure in order to make a decision. For example, if the objective

is to minimise the direct and indirect waiting times of patients, it is possible to provide the

ratio of the cost of direct waiting over the cost of indirect waiting. Estimating this ratio

may be easier for the service provider, instead of finding the actual monetary costs of each.

Congestion measures may also give an idea of how “good” a system is. Examples

of congestion measures include the average number of patients in the queue in a given time

period.

Fairness measures: are usually considered as the degree of uniformity of performance

across patients. Examples of fairness measures include measures of the average direct wait-

ing time for each patient in the order of appointments (average waiting time of the first

patient, of the second, etc.) [4]
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Other measures: may include the average number of patients treated in a clinic session,

resource utilisation, and any other measure which does not fit into the classifications above.

2.4 Methodologies in Literature

Cayirli classifies research methodologies in appointment scheduling (AS) literature accord-

ing to the health-care environment on which they focus, and the assumptions they make

in [9]. I mainly introduce three type of methodologies here.

2.4.1 Analysis methodologies

The analytical approaches to the study of AS include queuing theory and mathematical

programming methods. The main advantage of this exact methods is that they can guar-

antee the optimality of the solution found.

Integer and mixed integer programming [46] models are commonly used to approach

this or other similar problems. [11] define mathematical models for the scheduling of radio-

therapy treatment. The objective in their proposed model is to schedule as many patients

as possible in a short period of time (e.g. one week). They consider a block system,

where a workday is split into a fixed number of time blocks/slots. The limitation of these

mathematical models is that they do not consider all constraints present in real-world ra-

diotherapy scheduling, such as machine eligibility, release dates different from the booking

requests and patients who require multiple sessions per day. [9]

As described in [9], authors of [28] present a patient scheduling problem in a medical

clinic. Patients have stochastic service times and call in advance to arrange an appoint-

ment, which can be scheduled to a specific time slot, such that more than one patient can

be assigned to the same slot. The goal is to design an algorithm which decides the time of

an appointment at the time the patient calls in order to minimise three objective functions:

the mean waiting time, idle time and overtime (referred to as “tardiness” in the paper). A

local search is proposed and the authors prove that it finds an optimal solution by proving

that the objective function is multi-modular.
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2.4.2 Simulation

Simulations are also commonly used to model patient scheduling problems. They can

be used to better study each specific case, identify bottlenecks, as well as estimate the

effect of proposed changes on the scheduling policy, and evaluate different scheduling al-

gorithms [29].

Cayirli investigate the effect of different sequencing rules in scheduling an ambulatory

care service in [10]. The investigated rules include sequencing rules, which define the order

in which patients are scheduled in appointment slots, and appointment rules, which define

the number of patients assigned to each slot and their length. To evaluate each set of rules,

a simulation model is used with real-world data from a healthcare clinic in a New York

metropolitan hospital. The authors use patient and doctor-based measures to evaluate

each combination of rules and shows that sequencing rules have a much higher impact on

performance than appointment rules.

Lev and Caltagirone categorise the problem of patient scheduling in a diagnostic radi-

ology department as a classic job shop machine scheduling problem, and develop a discrete

event simulation model of patient flow in [38]. The model is used to evaluate the perfor-

mance of seven different scheduling rules according to 4 performance measures: waiting

time prior to examination, total time in the system, distributions of waiting and total times,

and the number of patients in the system at the end of working hours. The two rules pri-

oritise the patients in the queue based on their expected session duration for a resource

achieve the best results. The authors recommend one of these two rules. However, they

acknowledge that, of the evaluated rules, the two best are the only rules which would re-

quire a computer to perform the scheduling (the other rules could be performed manually).

2.4.3 Heuristics and Meta-heuristics

In the case where the problem instances are too large for exact methods, heuristics and

meta- heuristics can be used instead. As with exact methods, they should also be com-

bined with different approaches to consider future patients, such as resource reservation or

demand forecasting.
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Vermeulen presents an adaptive algorithm for scheduling patients on a CT-scan in [58].

Patients are divided in groups according to their urgency and other characteristics, where

urgent patients have a much shorter time window to get their scan than other patients.

The algorithm makes reservations for each type of patient and adaptively modifies the

reserved slots when they are not used by non-urgent patients. This is a good example of

resource reservation which is updated as time goes by depending on the quantity of the

resource available in the short term.

kapamara uses a steepest hill climbing method for a radiotherapy patient scheduling

problem in The Arden Cancer Centre radiotherapy department in Coventry, UK [30]. The

schedule is first generated by constructive heuristics, where a different dispatching rule is

used for each stage of pre-treatment. This schedule is then improved by a hill climbing

heuristic which tries to bring each appointment forward to the earliest day possible. The

algorithms consider only patients who have already arrived, which often results in a very

full schedule with little or no room for higher priority patients who arrive with short notice.

2.4.4 Demand Estimation and Modelling

Methods that estimate the demand and properly model the problem are also used in many

research. For example, Nathan presents a model based on a Monte-Carlo distribution to

calculate the percentage of spare capacity required to keep waiting times to treatment

short [45]. Some environmental factors such as no treatment on bank holidays are anal-

ysed with respect to the outcome of the model. Alexopoulos et. al. propose a modelling

strategy for patients arrival in community clinics [2]. They suggest that the usual mod-

elling methods are not very precise such as using a Poisson process for modelling arrival of

unscheduled patients and a normal distribution for calculating the tardiness of scheduled

patients. They perform experiments with several models and distributions, and conclude

the Johnson CDF has a better fit than the normal distribution for the problem.
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Chapter 3

The Multiple Examinations

Scheduling Problem

In this chapter the Multiple Examinations Scheduling Problem (MESP) is formally de-

scribed with suitable notation in the first section and a multi-agent system as well as a

novel solution (scheduling method) for the MESP, called ”SlotRkr”, is present in section

3.2. Furthermore, the detailed designs of a simulation model that models the random

patient arrival streams in the specialty clinic is demonstrated in section 3.3. Finally, the

design of the experiments, which aim at testing the performance of such solution, is de-

scribed in the last section together with the analysis of the experimental result.

3.1 Formal problem description

The multiple examinations scheduling problem (MESP) consists in the design of an ef-

fective plan that contains the scheduled date of two examinations, MRI scan and TRUS

BIOPSY test, in real-time. Creating effective plan for patients means the average access

time to the examination for all patients can be minimised. The plan is created upon patient

arrival, making this problem is an on-line scheduling problem which reflects the control

mechanisms that deal with monitoring the process and reacting to unplanned events [25].

To properly describe the MESP, three main sets and their mathematical notation is first

introduced as follows:

One-Stop-Clinic (OSC) provides consultations for patients once a week and after a total
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|W | weeks’ period, which is also called ”scheduling horizon”, the performance of SlotRkr

and other scheduling method is calculated and compared to each other. The patient set P

contains all patients visiting OSC during the scheduling horizon. Each patient pi has an

important attribute planning window pwi, which indicates the number of days left between

current day and deadline. Then, patients will be classified into three groups according to

their planning window: patients with largest planning window pwi ∈ [15, 21] are cate-

gorised to g1; patients with smallest planning window pwi ∈ [0, 7] are categorised to g3 and

the rest are categorized to g2.

Patients from different groups have different urgency level but they are all supposed to

undergo two types of examinations, MRI scan and TRUS biopsy test, which are represented

as set E = {MRI, TRUS} and indexed with e. Each examination can only be performed

a certain amount of times on specific working day and this information can be described by

a resource calendar RC. Resource calendar for each examination is indexed as rce, which

describes all the resource for the following |D| days. D is the scheduling horizon, which is

discretised in working days d and all the waiting patients should be scheduled to undergo

examinations after d days (d ≤ |D|). Considering the deadline of TRUS biopsy test is 21

days in NHS standard, |D| should be equal to 21. Resource in day d is represented by a

list of binary variables {ts1, ts2, ..., tsnd
} where tsi indicates the availability of i− th time

slots on a given day d and nd is the total number of time slots on that day. An example of

resource calendar for OSC is shown in Table.3.5 and Table.3.6

The expected solution to MESP is can be described as effectively scheduling patient pi

to undergo examination e after sd days. Therefore, the variable sde,pi denotes the scheduled

date of examination e for patient pi and it cannot be larger than the scheduling horizon

|D|. Also, the number of patients who have examination e on a certain day cannot exceed

the corresponding capacity described in resource calendar. The effective scheduling here is

measured by the overdue rate OD =
|pi|1{sdTRUS,pi

>pwi}
|P | , which is the percentage of patients

whose scheduled date of last examination, which is TRUS test, exceed the deadline. In

this equation, |P | equals the number of patients who visit OSC during W weeks where W

defines as the planning horizon. In the original data set, planning horizon equals 50 weeks

but in the simulation model, it is a user-defined parameter that can be adjusted. Other

performance metrics include the average days between referral date to diagnosis date, de-

notes as PL, and the average days between consultation and scheduled date of the last
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Sets Indices Description

E e Examinations that patients need to take (E = {MRI, TRUS})

RC rce
Resource calendar of examination ei, contains the number
of slots that allocated to performing e in each working day

D d
Scheduling horizon is a period that discretised in working
days and scheduled date should be within such period (D ∈ [0, 21])

P pi Patients that arrive within |W | weeks for scheduling

G(pwi) gi
Groups that patient pi belongs to, which depends on his planning
window pwi (G(pwi) = {g1, g2, g3})

Table 3.1: Sets Notation

examination, denotes as EL, over the planning horizon.

With previous descriptions, I define MESP as follows:

DEFINITION 1 MESP The Multiple Examinations Scheduling Problem (MESP) can

be defined as the problem of creating a set of effective scheduling plan {i ∈ N | SPpi =

(sdMRI,pi , sdTRUS,pi)} for all patients upon individual arrival that determining the sched-

uled date of Magnetic Resonance Imaging (MRI) scan and Trans Rectal Ultra Sonography

(TRUS) test for each of them so that the ratio of patients who are scheduled outside their

deadline for diagnosis can be minimised.

The hospital environment is highly complex and uncertain. For example, even though

the length of each timeslot is set to be fixed and identical to every patient, the actual

length of examination may vary due to different physical conditions of patients, resulting

in a postpone of future examination. For another example, patients may be late or even

not attend the scheduled examination, even though it is less frequent in specialised clinic.

Therefore, in order to reduce the uncertainty of the MESP to a suitable level, I present a

list of assumptions in Table.3.3.

With these assumptions, the only randomness of MESP remains in the patient set.

First, the number of patients arrival in each week is uncertain due to the fact that once

patients get referral from GP, they can come to visit OSC on every Tuesday, which may be

largely affected by the weather or some unanticipated event or even some seasonal factors
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Variables Domain Description

λ R Mean of a Poisson distribution describing the arrivals
of patients in each week

µi R Mean arrival rate of each group in each week

σ2
i R Variance of the arrival rate of each group in each week

B N Number of batches to simulate (generate samples) for
experiments

W N Number of simulated weeks in a batch during which the
performance metrics are calculated

pwi N Planning window for patient pi, indicates the day
between current day and his deadline of diagnosis

tsed,j {0, 1},∀j ≤ |RCe(d)| The indicator of whether j − th time slot on day
d for examination e is occupied (0) and or not (1)

TotalPat(b, w) R Total number of patients arriving in week w in
b− th simulated batch

sde,pi N ≤ |D| Scheduled date of examination e for patient pi

diff R Difference of days of scheduling date for two
examinations

COST R The dynamic cost of timeslots calculated by a cost
function

CR N A component in cost function that considering the rules
set by NHS UK and PAH

CU N A component in cost function that considering the
utilisation of examination timeslots

CP N
A component in cost function that considering the
penalty for scheduling less urgent patient for early
examinations

wR, wR, wR N Weights of each component CR, CR, CP in the cost
function

ODM [0, 1]
The average overdue rate in |W | weeks considering
the maximal acceptance pathway length

ODG [0, 1]
The average overdue rate in |W | weeks considering
the good practice pathway length

OT [0, 1] The average overtime rate in |W | weeks

L N The average length between referral to diagnosis
(diagnosis pathway length) in |W |weeks

U N The average utilisation rate of examination timeslots
in |W | weeks

Table 3.2: Variables Notation
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Assumptions for MESP

1. The capacity of each examination is fixed and consistent in each week once it has
been set
2. For patients who cannot be scheduled with their deadline, they are assumed to
receive overtime service, which is not considered in MESP.
3. Each patient arrives is assumed to receive both examination.
4. No-shows and delays for examinations are not considered.
5. All scheduled examinations are assumed to be completed on the scheduled date.

Table 3.3: Assumptions for MESP

such as the holidays. Furthermore, patients’ arriving day can directly determine the groups

that patients belong to: the later patients visit the hospital, the less time left for them to

complete the examinations before they get diagnosis, leading to an uncertain proportion

of each group. As the scheduling decision should be made upon patient’s arrival, the un-

certainty requires an dynamic scheduling rule which has the ability to ”predict” the future

rather than a static rule. For an instances, there are two patients p1 and p2 coming in

sequence for consultation and there is only one time slot left for MRI scan in current week.

p1 has a 14-day’s planning window, while p2’s planning window is only 2 days. If patients

are scheduled in a ”first come first serve” way, p1 will be scheduled in current week’s time

slot, resulting an overdue schedule for p2. If the scheduling rule can ”predict” that p1 may

not be so urgent and schedule he to next week’s time slot, the efficiency of OSC can be

improved. However, when considered another scenario where there are still two patients

waiting for scheduling while there are more than two time slots left in current week, it is

not wise to schedule p1 to next week’s time slot. Therefore, the main challenge of MESP

is to predict these uncertainty and schedule patients in a way that the undesirable effect

of the uncertainty can be reduced.

3.2 SlotRkr: A solution to MESP

A multi-agent system solution to MESP is proposed in this section. As stated in [59], multi-

agent system can better described the distributed nature of the hospital when there are

multiple departments involved in the problem of scheduling a combination of appointments

to patients . To properly model the problem, three types of agents are constructed: patient
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Figure 3.1: Multi-agent System

agent that handles patients’ information; department agent that consists of the individual

department which provides the examination for patients; and scheduler agent that provides

various scheduling rules for scheduling. A novel cost-based scheduling method, called

”SlotRkr”, is designed and used by scheduler agent. The whole system is shown in Fig.3.1

and the detailed design of each agent as well as their interactions are described below.

3.2.1 Patient Agent

Patient agent is designed to get information needed for scheduling from the electronic pa-

tient record (EPR) system, which is shown as the top table in Fig.3.2. The EPR consists

of several columns in which the ones interested in MESP include Pat id, Referral Request

Received Date, Date First Seen, Diagnosis Test 1, Ref Date 1, Diagnosis Test 1 - Test,

Diagnosis Test 2, Ref Date 2, Diagnosis Test 2 - Test. Whenever a patient visit OSC, the

column Date First Seen will be filled by current date. Then, patient agent will extract this

line and use it to fill in a new information table that demonstrated in the bottom table

in Fig.3.2. Finally, the information contained in the new table will be sent to department

agent.

1. A patient counter is used to count the number of patients that come today and the

new Pat id will be an integer starts from 1;
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Figure 3.2: Patient agent

2. Planning window is calculated by two steps: first, the gap between referral date and

today is calculated, denoted as gap; second, the deadline of test finishing date is 21

days after referral so the planning window is 21− gap;

3. Patients are assigned to different groups according to planning window;

4. Scheduled date for examinations 1 and 2 are leaving blanked for department agent

to fill in.

3.2.2 Department Agent

The capacity plan of OSC determines the total number of timeslots that each department

provides on each working day, which can be seen in Table.3.4. Department agent is respon-

sible for maintaining a resource calendar for each department. As an example of resource

calendar of MRI that described in Table.3.5, each line represents all the timeslots d days

after current day where d is defined in the first column Days. The resource calendar will be

updated every Tuesday when the consultation is open. Thus, the line with Days = 0 rep-

resents current day, which is Tuesday and the line with Days = 7 represents next Tuesday

and so on. On each day, the number of timeslots equals the capacity of that examination

on the corresponding day in Table.3.4, which is denoted as nd. The i − th time slot for

MRI scan in day 0 is denoted as tsmd,i where i ∈ [1, nd].
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Whenever the time slot is scheduled to one patient, the corresponding position will

be updated by the patient’s id Patid and will be no longer available. When a request of

scheduling for examination is received, all first available time slot that on each day are

collected as a list and sent to scheduler agent.

Number of time slots

Weekday MRI Department TRUS Department
Monday 0 5
Tuesday 6 5
Wednesday 2 0
Thursday 0 5
Friday 0 0

Total 8 15

Table 3.4: One Stop Clinic Capacity

3.2.3 Scheduler Agent

Scheduler agent receives two lists of available time slots on different days. First step is to

generate all valid combinations of two examinations. A valid combination is defined as two

scheduled date of MRI and TRUS in which the scheduled date of MRI is earlier or on the

same day of scheduled date of TRUS. The second step is to use one of the scheduling rules

to choose one of the combination comb from the total set COMB. The main contribution

Resource Calendar - MRI

Days Time slots
0 tsm0,1 tsm0,2 tsm0,3 tsm0,4 tsm0,5 tsm0,6
1 tsm1,1 tsm1,2
7 tsm7,1 tsm7,2 tsm7,3 tsm7,4 tsm7,5 tsm7,6
8 tsm8,1 tsm8,2
14 tsm14,1 tsm14,2 tsm14,3 tsm14,4 tsm14,5 tsm14,6
15 tsm15,1 tsm15,2

Table 3.5: Resource Calendar - MRI

Resource Calendar - TRUS

Days Time slots
0 tst0,1 tst0,2 tst0,3 tst0,4 tst0,5
2 tst2,1 tst2,2 tst2,3 tst2,4 tst2,5
6 tst6,1 tst6,2 tst6,3 tst6,4 tst6,5
7 tst7,1 tst7,2 tst7,3 tst7,4 tst7,5
9 tst9,1 tst9,2 tst9,3 tst9,4 tst9,5
13 tst13,1 tst13,2 tst13,3 tst13,4 tst13,5
14 tst14,1 tst14,2 tst14,3 tst14,4 tst14,5
16 tst16,1 tst16,2 tst16,3 tst16,4 tst16,5

Table 3.6: Resource Calendar - TRUS
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of this thesis is to design a cost-based scheduling rule, called ”SlotRkr”, to rank all the time

slots using a cost function and yield the one with lowest cost. Additionally, a heuristics

scheduling rule is designed to approximate the optimal solution of MESP. Two classical

scheduling rules, first come first serves (FCFS) and first come random serve (FCRS), are

also presented below.

Method 1. Heuristics method

This novel method can be seen as a ”postpone and best schedule” method. Its idea is to

pretend that the list of waiting patients and their waiting status are known before schedul-

ing. A requirement of this method is a set of patients that is ordered in non-increasing

arrival days. All daily fractions from patient are scheduled in the first available feasible

examination slots. Instead of scheduling upon arrival, it sorts the list from the most urgent

to least and schedules the sorted list in a FCFS sequence. In this way, the most urgent

patients will be scheduled to the earliest slots. If the available time slots in current week is

all occupied, the unscheduled patients will be added to next week’s waiting list. In the next

week, the task will be scheduling the newly arrival patients and these unscheduled patients.

Heuristics Method

1. Initialise all parameter PARA = {B,W}
2. Generate B batches of simulated patient flow PFSIM = {P1, P2, ..., PB}

where Pb = {p1, p2, ..., pW}
3. For b = 1 to B, do
4. RCMRI ,RCTRUS = GetResourceCalendar(W )
5. For w = 1 to W , do
6. P ?

w = SortByP lanningWindow(PFSIM [b][w])
7. weeklyDemand = len(pw)
8. For i = 1 to weeklyDemand, do
9. pateint = pw[i]
10. scheduledP lan = FCFS(patient)
11. Record (Pb)
12. End i
13. End w
14. Calculate O(Pb)
15. End b

Table 3.7: Heuristics Method
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Even though the method is not practical, it provides an optimal result for comparison

and the intuition behind it can be used to build the cost-based function. Details of this

method is shown in Table.3.7. Its idea is to assume that the weekly demand is known

to the scheduler in advance and then schedule patients from most urgent ones to least

urgent ones. In order to achieve this, the weekly demand is first sort by the variable pw

in ascending order. Then, scheduling the sorted list in a first-come-first-served manner.

Finally, the week that patients are coming (referral week) and the week that they are

scheduled to (scheduled week) are record together with patients’ planning window. Let

variable T = {0, 1} indicates whether the referral week of the patient is equal to the

scheduled week or not. From the record, we can obtain:

i. the probability of planning window given the P (pw|T );

ii. the probability of transferring P (T = 1) and P (T = 0);

Using Bayesian theorem, the transfer probability for each planning window can be calcu-

lated as

P (T |pw) =
P (pw|T )P (T )

P (pw)
=

P (pw|T )P (T )

P (pw|T = 1)P (T = 1) + P (pw|T = 0)P (T = 0)

, which is integrated to the cost function that described in Method.2. Although this method

is not realistic since the scheduling must be made upon patient’s arrival and the future

patients is not predictable, it can provide an optimal scheduling for the simulated patient

flow for comparison.

Method 2. SlotRkr

This method is adapted from [59]. It follows the same idea that defining a schedule-

cost function to rank each available timeslot and the one with lowest cost is scheduled to

patient. If there are multiple timeslots that have the same lowest cost, the earliest one is

scheduled. However, the main difference that distinguishes my work is the re-design of the

cost function. The overall cost function consists of three components: CR, CU , CP and each

represents the cost of timeslots when considering different performance metrics considered

in this problem. It is a dynamic method as the cost function is calculated real-time, which

mimics a scheduling staff who make decision while considering the real-time situations.

The details are described below.
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Component 1: CR considers the standard rules set by NHS UK and PAH. As mentioned

in Chapter 1, it is suggested that i) patients should be schedule in the same day or next

day for MRI scan after the clinical assessment; ii) the scheduled date of TRUS test is 14

days after referral according to PAH; iii) the maximal acceptance of TRUS scheduled date

is 21 days according to NHS UK. Let binary variables r1, r2, r3 equals 1 if the timeslot

does not achieve the corresponding rule. Also, let a0, a1, a2 denotes the parameters that

determine the weight of each rule in the cost function. The design rules of the cost function

CR that represents in (3.1) are described below :

i. If r3 = 1, which means the scheduled date of TRUS is later than maximal acceptance

due date, the cost should be highest, which is 1.

ii. When r3 = 1, these is no need to consider r2 as it will always equal to 1. Therefore,

when (1− r3) = 1 and r2 = 1, the scheduled date of TRUS test is between day 14 and 21.

In this case, a smaller cost is assigned when compared to the case r3 = 1, which means

a2 < 1.

iii. When considering the scheduled date of MRI scan, it is natural to make it closer

to the scheduled date of TRUS test. Thus, two scenarios are considered: when r2 = 1

and r1 = 0, larger penalty is added to the cost function, while when r2 = 1 and r1 = 1, a

smaller cost is introduced, which means a1 > a0. The maximal cost of these two scenarios,

which is a2 + a1 cannot exceed 1. Therefore, a intuitive choice used in this thesis is

a0 = 0.075, a1 = 0.225, a2 = 0.375.

CR = r3 + (1− r3) ∗ {r2 ∗ [a2 + a1 ∗ (1− r1)] + a0 ∗ r1} (3.1)

where 
a1 + a2 < 1

a0 < a1

a0, a1, a2 > 0

Component 2: CU considers the utilisation of timeslots. According to the capacity plan

of OSC, there are 15 timeslots for TRUS test per week while there are only 8 timeslots for

MRI scan. Furthermore, patients can start TRUS tests only when they finish MRI scan.

Due to these reasons, only utilisation of timeslots for MRI scan is considered here. Two

variables FULL and LATE are adapted from [59] to calculate the cost function regarding
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to utilisation. As shown in 3.2 FULL determines the fullness of timeslots in current week;

LATEpi denotes the lateness of the ith patient arriving in current day, which is quite

different from [59] where LATE is used to define the lateness of a timeslot in the current

day while in our cases, scheduling patients to different timeslots within one day will not

affect the objective function. Furthermore, the biggest difference is that in this thesis,

utilisation cost function CU in 3.3 is used to represent a mismatch between the fullness of

timeslots and the lateness of patients. A in 3.3, CU of a timeslot decreases as the lateness

of patients increasing with different speed, which is depended on the fullness of timeslots.

It has a intuitive meaning: if the timeslots is not full (FULL ≤ 1
3
), it is encouraged to

schedule these timeslots to patients and the cost sharply reduces for patients with larger

lateness as they are more likely to be the last patient arriving in current day; when the

fullness of timeslots increased, meaning that there are less available timeslots on a given

day, the cost will reduce in a slower speed as patients arrive so as to reserve timeslots for

possible higher urgency level patients that coming later.

FULL =

∑6
d

∑
i ts

e
d,i1{tsed,i 6= 0}∑6
d

∑
i ts

e
d,i

, LATEpi =
i

λ
(3.2)

CU(LATEpi , FULLe) =


(LATEpi − 1)2 if FULLe ≤ 1

3
,

−LATEpi + 1 if 1
3
< FULLe ≤ 2

3
,

−LATEpi2 + 1 if 2
3
< FULLe ≤ 1 ,

(3.3)

Component 3: CP considers the average rate of overdue patient. Its idea is to penalise

the schedule of less urgent patients to early timeslots as such schedule might result in a sit-

uation that urgent patients are scheduled to late timeslots which exceed their due date. As

discussed in Method 1, a probability of transferring patient to next week’s timeslot given

patient’s planning window P (T |pw) can be obtained by observing the results of Method 1.

It is intuitive to treat this probability as a penalty for scheduling patients with pw planning

window in current week as the larger probability means it is more likely to postpone such

patient into next week’s examinations. Therefore,

CP (pw) = P (T = 1|pw) (3.4)
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Figure 3.3: Cost CU

Finally, the overall cost function used in SlotRkr can be represented as

COST = wRCR + wRCU + wPCP (3.5)

where wR, wU , wP represents the weight of each component and is further tuned in section

4.2.

Method 3. FCFS

When scheduling patients with FCFS, the earliest available timeslot of each depart-

ment is selected. Given optimal allocation of capacity to patient groups, FCFS is the

most efficient static scheduling approach [24]. It serves as the benchmark method in the

comparison of different scheduling rules.

3.3 Simulation Model

In this section, a simulation model is developed to model the randomness in the patient’s

arrival process. It consists of two parts: i) simulate the patient’s weekly arrival streams in

the OSC; ii) model the composition of the simulated weekly streams.
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Figure 3.4: Patient simulator

3.3.1 Weekly arrival streams

1. Data Analysis

The first step to model patient’s arrival is to examine the data set provided by PAH. The

data set consists of in total 2,229 records that describes the patients’ activities in Urology

clinic from 2017.1 to 2018.8. Among them, there are 837 patients referred to OSC, which

is modelled in this thesis, while the rest are referred to other specialty clinic.

The aim is to model the number of patients arriving in OSC for consultation. Let

random variable X denotes the number of patients arriving each week and x is the ob-

served value of X. Due to the fact that in OSC, there are only 12 timeslots reserved for

consultation each week only on Tuesday and walk-in patients are not acceptable, the level

k, or the categories of X, is the integer number ranging from 0 to 12. By grouping patients

according to their arriving week, we can obtain the number of arriving patients in each

week. Further combing those weeks with same level, we obtain the frequency of weeks of

different level, as the bar demonstrate in Fig.3.4.

2. Modelling

Random (unscheduled) patient arrivals were often assumed to follow an ordinary Pois-

son process (so the corresponding patient interarrival times were randomly sampled from

an exponential distribution) [2]. The parameter λ of Poisson distribution represents the

average number of arriving patients per week and it can be estimated by the maximum

likelihood estimation (MLE):

λ̂MLE =

∑n
i xi
n
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Figure 3.5: Result of simulation model

where n is the total number of weeks in data set and xi is the observed patient arrivals

in ith week. With
∑n

i xi = 376 and n = 50, we have λ̂MLE = 7.52. For comparison, the

normal distribution with parameter µ = σ2 = λ̂MLE is also used to simulate the patients

arrivals. The results of poisson simulation and normal simulation can be seen in Fig.3.4

with solid and dash line, respectively.

3. Goodness-Of-Fit Test

In order to examine the accuracy of simulated patient streams from each distribution,

two chi-squared goodness-of-fit tests are conducted with the null hypothesis stating that

the patient arrivals in OSC are consistent with a Poisson and a Normal distribution, re-

spectively. The main idea of a chi-square goodness-of-fit test is to measure the difference

between observed sample frequencies (Oi) and expected frequencies (Ei) by the chi-square

statistic χ̂2
c =

∑ (Oi−Ei)
2

Ei
. Then, the null hypothesis is rejected if χ̂2

c is larger than the

value χ2
α(r) where r is degrees of freedom, equalling to the number of levels minus 1, and

α is the significance level.

Respectively, the calculated χ̂2
c of Poisson distribution and Normal distribution is 14.22

and 9.86, which is shown in Table.3.8. With a 95% confidence (χ2
0.01(11) = 19.68), I do not

have enough evidence to reject that the arrival of patients follows a Poisson distribution

with λ = 7.52 or a Normal distribution with µ = 7.52, σ2 = 2.5. Due to the reason

that Poisson distribution is more interpretable when modelling discrete events, it is finally

chosen for the simulation of weekly patient arrival streams.
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Number of patients Observed Normal distribution Poisson distribution
each week frequencies frequencies frequencies

X Oi Ei Ei

1 2 0.28 0.20
2 0 0.71 0.77
3 2 1.58 1.92
4 1 2.98 3.61
5 5 4.80 5.43
6 7 6.61 6.81
7 5 7.76 7.31
8 8 7.79 6.88
9 8 6.67 5.74
10 6 4.88 4.32
11 6 3.04 2.95
12 0 1.62 1.85

Table 3.8: Observed and Simulated data

3.3.2 Composition of the streams

As discussed in section 3.1, patients are classified into three groups with different urgency

levels according to their planning window. We know OSC provides consultation timeslots

every Tuesday for patients with GP referral. However, patients may visit their GP on any

workday or even weekend, resulting in different arriving days and the planning window is

defined as 21 minus their arriving day, which may introduce lots of randomness. For exam-

ple, two patients p1 and p2 both get referral by their GP on Monday and one patient p3 get

his referral on Wednesday. p1 visit OSC on the same week, which is one day after he got

referral, resulting a 20-days’ planning window. p2 miss the next day’s appointment so he

and p3 both visit OSC on next week so their planning window is 13 and 15, respectively. In

this case, the composition of the stream can be treated as the percentage of patients with

different planning window. Modelling the composition consists of two steps: modelling the

composition with respect to group first and modelling the planning window in each group.

1. Group modelling

In the group modelling step, the interested variables are the probability of patients be-

longing to each group, denoted as θG1 , θG2 , θG3 . The MLE of each variable θ̂Gj
can be

calculated as dividing the total number of observed patients by the number of observed
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patients belonging to corresponding group in the data set, which is shown in Equation.3.6.

The result of such estimate is θ̂G1 = 0.66, θ̂G2 = 0.29, θ̂G3 = 0.05.

θ̂Gj
=

∑
pi1{pi ∈ Gj}∑

pi
(3.6)

Furthermore, in order to quantify the accuracy of θ̂Gj
, the standard error of each es-

timate should be measured. Since the sample size in the original data set is not enough

to verify the accuracy of estimation and it is not possible to generate new samples from

it, the bootstrapping technique is used instead. The bootstrap is a widely applicable and

extremely powerful statistical tool that can be used to quantify the uncertainty associ-

ated with a given estimator or statistical learning method [27]. With the aim of estimating

the variability of θ̂Gj
, a bootstrapping process is conducted with each step described below:

1. Let Fn denotes the empirical cumulative distribution function of original data set with

n samples, and p(i)? denotes the ith sampling with replacement from the original data

set.

2. Set B to a large value, which is 10000 in this bootstrapping.

3. Draw p(1)?, ..., p(n)? ∼ F̂n

4. Compute bootstrap estimate for θ as θ̄?G1
, θ̄?G2

, θ̄?G3
using the equation in Equation.3.6

5. Repeat step 3 and 4, B times, to get {θ̄?G1,1
, θ̄?G2,1

, θ̄?G3,1
, ..., θ̄?G1,B

, θ̄?G2,B
, θ̄?G3,B

}

6. The standard error of these bootstrap estimates for group j can be calculated as

s.e.boot(Gj) ≡

√√√√ 1

B

B∑
b=1

(θ̄?Gj ,b
− 1

B

B∑
r=1

θ̄?Gj ,r
)2

The obtained result of bootstrapping standard error for each group is s.e.boot(G1) =

0.025, s.e.boot(G2) = 0.024, s.e.boot(G3) = 0.011. With the mean and standard derivation,

three beta distributions are constructed to model the probability that patient belongs to

different groups.

Finally, according to Theorem 2, it is possible to prove that α = µ2(1−µ)
σ2 − µ and β =

µ(1−µ)2
σ2 −(1−µ). With µ = θ̂MLE and σ2 = (s.e.boot)2, we obtain ΘG1 ∼ Beta(233.40, 120.17),
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ΘG2 ∼ Beta(102.57, 249.38) and ΘG3 ∼ Beta(17.80, 349.80). Therefore, whenever a pa-

tient arrives, three probability θG1 , θG2 , θG3 are randomly sampled from the corresponding

beta distribution and further normalised so that θ?G1
+ θ?G2

+ θ?G3
= 1. Then, this patient’s

group is defined by a random number r generated from uniform distribution U [0, 1], which

is shown in Equation.3.7.

Group =


1 r ≤ θ?G1

,

2 θ?G1
< r ≤ θ?G2

,

3 θ?G2
< r ≤ 1.

(3.7)

THEOREM 2 For Beta(α, β) distribution, we have µ = E[X] = α
α+β

and σ2 = V ar(X) =

E(X − µ)2 = αβ
(α+β)2(α+β+1)

2. Arriving day modelling

Patients’ arrival day refers to the day between referral and first consultation in OSC.

Earliest patients that arrive within 7 days after they have referral are grouped into group

1. Group 2 consists of patients with arriving day between 8 and 14 and patients with at

least 15-days’ arriving are categorised as group 3. The observed frequency of patients in

each group is presented in Fig.3.6. According to the data, it can be concluded that:

i. the number of patients in group 1 is the largest (249) and it linearly increases as

the arriving day increases;

ii. size of group 2 is less than half of size of group 1 and the number of each arriving

day shows no significant difference;

iii. there a peak on the arriving day 18 but the data size is extremely small (18

patients) when comparing to other groups;

iv. there is no patient arriving on day 2,3,15,16 and there are few patients arriving

on day 9 and 10, which means there are fewer patients who visit their GP on Saturday or

Sunday.

Therefore, three linear regression model is used to predict patients’ arrival day in each

group and the predicted result is shown as the lines in Fig.3.6. From that linear model, we

can obtain the predicted probability of patient’ arriving days within each group. Let AR

denotes random variables of patients’ arriving day and ar is the value that AR can take.
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Figure 3.6: Observed and predicted arriving day for each group

The scheduling horizon is 21 days so the maximal value of ar is 21. Furthermore, due to

the finding that patients seldom visit GP on weekend, ar equals the integers from 1 to

21, except 2,3,9,10,15 and 16. Multiplying that probability by the sampled probability of

the corresponding group θGi
, we obtain the probability of each arriving days P (AR = ar),

which is equal to the probability of patients’ planning window P (pw) with planning window

pw = 21 − ar. Again, by first normalising the probability such that the probability of all

valid pw sums up to 1 and then observing the value of a randomly generated number from

U [0, 1], we can determine the planning window of each patient in the arrival streams.

3.3.3 Summary

To summarise, the simulation model takes parameter W as input to create W weeks of

patient arriving streams. The number of patients per week is generated randomly from a

Poisson distribution with parameter λ = 7.52. Each of them will have a simulated planning

window, which is determined by categorising them into three groups first and allocating the

planning window within this group. The probability of each group follows beta distribution:

ΘG1 ∼ Beta(233.40, 120.17), ΘG2 ∼ Beta(102.57, 249.38) and ΘG3 ∼ Beta(17.80, 349.80).

3.4 Experiments

In this section, a series of experiments are carried out to compare the performance of differ-

ent scheduling methods under different environmental parameter used in simulation model.

First of all, the experimental setting is first introduced. Then, the results of experiments

are presented and several hypothesis are tested. Finally, the challenges and limitations of
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such experiments are discussed.

3.4.1 Experimental setting

1. Test Data

The data used in experiments comes from the simulation model described in section 3.4.

During each experiment, there are in total B batches of simulated patient flow which are

further divided into W weeks. The patient arrival rate in each week is randomly generated

from a Poisson distribution with parameter λ and the probability of each patient belonging

to group i is randomly generated from a beta distribution with mean θGi
and variance σ2

Gi
.

2. Dependent variables

The outcome of the experiments are measured by depend variables described in Table.3.9.

Overdue rate is the most importance measurement indicating the performance of scheduling

methods. A patient is said to be overdue when his scheduled date for the last examination

is exceed the due date and the due date can be determined by two standards: ODM is the

average overdue rate with maximal accepted due date, which is 21 days set by NHS UK,

and it can be calculated as

ODM =

∑N
i pi1{SD(pi) > pw21}∑N

i pi

where N is the total number of patients during the scheduling horizon (W weeks), SDpi

is the scheduled date for patient i and pwM is the planning window calculated according

to maximal acceptance. Similarly, ODG can be calculated in the same way by replacing

pwM with pwG, which is the planning window calculated according to good practice. Ad-

ditionally, the variable L can also measure the scheduling efficiency from the perspective of

average length of pathway: the longer the length is, the higher probability that patient is

overdue. Even though it is similar to the overdue ratio, it is not the main goal considered

by PAH.

Apart from overdue rate, overtime rate is another indicator of inefficient scheduling.

When there is no available timeslot in the next 21 days, doctors is assumed to work over-

time to provide timeslots for patients arriving during this period. The ratio of overtime

timeslots to the total timeslots with scheduling horizon is denoted as OT .
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The last dependent variable considered is the average utilisation of MRI scan timeslots.

Dependent variables Description Weight

ODM Average overdue rate with maximal acceptance (21 days) 0.3
ODG Average overdue rate with Good practice (14 days) 0.2
OT Average work overtime rate for doctor 0.2
L Average length of pathway 0.15
U Average utilisation of MRI scan timeslots 0.15

Table 3.9: Dependent variables

Although it is not directly considered as the objective, it can still have great impact on

scheduling. The reason is that a waste of timeslots could be resulted from a mismatch

between the scheduled date and patients’ planning window. For example, when the early

timeslots on a given week are occupied by less urgent patients who could have used the

timeslots in the following days or weeks, the timeslots in the following days or weeks might

not be used up when all the following patients arriving have a tight planning window.

Therefore, a higher utilisation level means there are fewer timeslots being wasted and it

could reflect the efficiency of a scheduling method to a certain degree.

3. Independent variables and Experimental Factors

The independent variables, which are the variables that manipulates in the experiments,

include the configurations for simulation model as described in Table.3.10. These variables

represent the environmental factors in the hospital. For example, the larger λ will result

in a more crowd environment with increased average number of patients per week; and

the higher θG3 will increase the percentage of patients who belong to group 3, which is

the most urgent one, resulting in a situation that most patients are requesting the earliest

timeslots for examinations. From the data analysis in section 3.3, we obtain the estimated

value of each of these parameters as well as the standard error of such estimate, which is

presented as a 95%confidence intervals in Table.3.10.

The aim of the experiments is to compare the performance of each scheduling method

under different hospital environment and by controlling the values of these independent

variables, the environment can be controlled to a certain level. Therefore, two experimen-

tal factors are defined as follows.
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Factor 1: λ is the patient arrival rate that determines different levels of crowdedness

in OSC. Due to the fact that when the clinic is less crowded, it is easier to schedule, I

only increase the level of crowdedness from ”normal”, ”crowded” to ”extremely crowded”,

which are identified by the case N , C and EC in Table.3.12, respectively. The value of λ

for each level is chosen according to its confidence interval.

Factor 2: ~θ is a vector containing all the probability of group that patient may belong

to. First of all, the case ”R” represents a regular level of urgency where the probability of

each group is the mean of simulated distribution. By increasing or decreasing the probabil-

ity of one certain group, there are 6 more different levels of urgency of the weekly demand

with full description in Table.3.12. For example, the LG1 case is determined by increasing

the probability of group 1 while others remain the same. After normalisation, the per-

centage of patients belong to group 2 and 3 will be increased, resulting in a most urgent

demand among all the cases. In contrast, HG1 describes the case that the probability of

group 1 is increased while others remain the same, leading to a least urgent demand.

Independent
variables

95% Confidence intervals

λ (6.76, 8.28)
ˆθG1 (0.611, 0.709)
ˆθG2 (0.244, 0.339)
ˆθG3 (0.027, 0.070)

Table 3.10: Independent variables

Extraneous
variables

Values

B 30
W 300
wR 0.461
wU 0.282
wP 0.257

Table 3.11: Extraneous vari-
ables

Finally, combining the cases of each experimental factor, we obtain 3∗7 = 21 treatments,

which are the experimental units. For example, combining case N and R, a treatment iden-

tified by N − R can describe a hospital environment with a normal level of crowdedness

and a regular level of urgency in the demand. With the aim of finding the most suitable

scheduling method that can be used in OSC, it is importance to analyse the performance of

each method under treatment N −R. Furthermore, it is also interested to investigate the

robustness of each method by observing the changes of their performance as the average

number of patients or the urgency level of demand increase. Therefore, three hypotheses

for the experiments are defined in Table.3.13.
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Experimental Case Levels Description
Factor ID (Values)

1. Patient
arrival rate

N 7.52 The estimated rate λ̂MLE

C 8.28 The upper bound of its CI: λ̂MLE + c σ√
n

EC 9.04 Exceed the upper bound by c σ√
n

2. Group
probability

R [0.66, 0.29, 0.05] The estimated probability θ̂MLE

LG1 [0.65, 0.30, 0.05] The lower bound of its CI: θG1 − c σ√
n

LG2 [0.69, 0.26, 0.05] The lower bound of its CI: θG2 − c σ√
n

LG3 [0.67, 0.29, 0.04] The lower bound of its CI: θG2 − c σ√
n

HG1 [0.68, 0.28, 0.05] The upper bound of its CI: θG1 + c σ√
n

HG2 [0.64, 0.32, 0.05] The upper bound of its CI: θG2 + c σ√
n

HG3 [0.65, 0.29, 0.06] The upper bound of its CI: θG3 + c σ√
n

Table 3.12: Environmental Setting

Hypotheses for the experiments

1. SlotRkr has better performance, which is defined as having lower weighted
performance metrics, than First-come-first-served (FCFS) when the testing scenario

best resembles the real environment in OSC
2. SlotRkr has better performance than FCFS when the average number of patients
per week increases from normal level to extremely crowded level.

3. SlotRkr has better performance than other scheduling methods when the urgency
level of patients weekly demand increases from least urgent to most urgent.

Table 3.13: Hypotheses for the experiments

4. Extraneous variables selection

The extraneous variable is defined as all variables, which are not the independent variable,

but could affect the results (depend variables) of the experiment [41]. In this experiments,

extraneous variables include the weight of SlotRkr’s cost function wR, wU , wP , the number

of batches B and the number of weeks in each batch W . Careful selection of each extra-

neous variable is described below.

1. Number of batches

The number of batches B is a user-defined parameter: a larger B can better determine the

variation of results but it is time-consuming. In order to ensure a relative reliable result
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and a reasonable running time, B is set to 30.

2. Number of weeks

As for the scheduling horizon W , it should be noted the resource calendar is initialised

Figure 3.7: Welch’s Graphical Method

as an empty one, which may affect the accuracy of experiments as in reality the resource

calendar is rarely empty. Therefore, the performance in the early weeks may be much

more better than usually and after a period, the performance may reach a steady state.

This period is called ”warm-up” period. Welch’s method is a commonly used method to

determine the ”warm-up” period [48], which plots moving averages X̄j(w) of 1 to n ob-

servations on a graph for a given time window w [56]. The run length is suggested to be

much larger than the warm-up period in order to be able to better capture the steady

state performance indicators [35]. The detailed algorithm in [56] is described in Appendix

B, and the obtained graph by following such algorithm is shown in Fig.3.7. It is easy to

observe that under different setting of time window w = 5, 10, 15, the system reaches its

steady state around week 30. Therefore, the original scheduling horizon W is extended

from 50 to 300 weeks, which is 10 times of the ”warm-up” period.

3. Weights

In this subsection, the hyper-parameters in the cost function of SlotRkr are optimised

under each case described in Table.3.12 to achieve a better performance. As discussed in

Chapter 3, there are three components in the cost function of SlotRkr focusing on different

performance metrics. Therefore, the hyper-parameters wR, wU , wP are optimised according

to the values of the five performance metrics described in Table.3.9.
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Grid search and manual search are the most widely used strategies for hyper-parameter

optimization. Grid search is simple to implement and parallelization is trivial; Manual

optimization gives researchers some degree of insight into parameter; while empirically

and theoretically that randomly chosen trials are more efficient for hyper-parameter op-

timization than trials on a grid [5]. Therefore, a random search is conducted to search

best combination of weights for cost function under different experimental cases defined

in 3.12. There are in total 30 runs in each case and in each run, three random values

are generated from a [0, 1] uniform distribution to represent wR, wU , wP . These random

weights are used in the cost function to scheduling patients generated from the simulation

model described in section 3.3 with the selected extraneous variables B = 2 and W = 300

and the independent variables defined in each case.

The results of random search is analysed using a technique, called ”Technique for Or-

der Preference by Similarity to Ideal Solution (TOPSIS)”, which is presented by Hwang &

Yoon in [26]. Its main idea is to rank each configuration by calculating a ”TOPSIS” score

which considers all the performance metrics that this configuration achieves. The details

of calculating the score can be found in Appendix A. When the score approaches 1, the

configuration is said to be maximising the objectives while when it approaches to 0, the

configuration tends to better minimising the objectives. Considering the objectives include

maximising the utilisation and minimising all the rest metrics, I reverse the utilisation rate

to the wasting rate for consistence here. Therefore, the best configuration should be the

one with the lowest TOPSIS score.

Finally, the weights with lowest TOPSIS score in different cases are selected and rep-

resented together with values of performance metrics in Table.3.14. From top to bottom,

the crowdedness levels in the table are sorted from least crowded to most crowded and the

urgency levels are sorted from least urgent to most urgent. The bold number is the optimal

values obtained among the cases with different crowdedness level; the number in bracket is

the optimal values obtained among the cases with different urgency level; the underlined

number is the optimal among all cases. By fixing the crowdedness and comparing the

optimal weights in different urgency levels, the smallest variance is achieved when urgency

level is R. Therefore, the mean of three weights in this urgency levels is finally selected.
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Experi-

ment

Optimal Weights

~w = (wR, wU , wP )
ODM ODG OT L 1− U TOPSIS

N − LG2 ~w = (0.186, 0.068, 0.746) 0.047 0.448 (0.070) 13.756 0.072 0.509
N − LG3 ~w = (0.535, 0.427, 0.038) 0.031 0.428 (0.077) 13.854 (0.013) 0.511
N −HG1 ~w = (0.431, 0.527, 0.042) (0.035) 0.430 (0.080) 13.778 0.004 0.510
N −R ~w = (0.408, 0.263, 0.329) 0.044 0.444 (0.070) 13.902 0.069 0.507
N −HG3 ~w = (0.372, 0.154, 0.474) 0.060 0.463 (0.069) 14.092 0.058 0.508
N −HG2 ~w = (0.146, 0.588, 0.266) 0.050 0.468 (0.067) 14.038 0.079 0.510
N − LG1 ~w = (0.205, 0.194, 0.602) 0.048 0.466 (0.062) 13.963 0.073 0.509

C − LG2 ~w = (0.881, 0.053, 0.066) (0.036) 0.401 0.114 13.524 0.007 0.509
C − LG3 ~w = (0.129, 0.536, 0.335) 0.038 0.442 0.091 13.734 0.060 0.507
C −HG1 ~w = (0.836, 0.085, 0.080) 0.039 0.412 0.155 13.330 0.003 0.507
C −R ~w = (0.450, 0.126, 0.423) 0.049 0.425 0.137 13.447 0.034 0.505
C −HG3 ~w = (0.869, 0.112, 0.019) 0.044 (0.422) 0.148 13.453 (0.004) 0.506
C −HG2 ~w = (0.651, 0.317, 0.032) 0.044 0.430 0.136 13.648 0.005 0.506
C − LG1 ~w = (0.440, 0.533, 0.026) 0.045 0.438 0.112 13.844 0.008 0.507
EC − LG2 ~w = (0.806, 0.138, 0.056) 0.042 (0.387) 0.206 (12.895) (0.000) 0.505

EC − LG3 ~w = (0.868, 0.063, 0.069) (0.029) (0.410) 0.188 (13.066) (0.001) 0.506
EC −HG1 ~w = (0.553, 0.421, 0.027) 0.040 (0.396) 0.204 (12.958) (0.000) 0.504

EC −R ~w = (0.525, 0.457, 0.019) (0.040) (0.402) 0.216 (12.906) (0.000) 0.504

EC −HG3 ~w = (0.099, 0.231, 0.670) 0.054 0.423 0.198 (13.229) 0.025 0.503
EC −HG2 ~w = (0.014, 0.472, 0.514) (0.040) (0.417) 0.202 (13.062) (0.016) 0.503
EC − LG1 ~w = (0.550, 0.440, 0.010) (0.043) (0.414) 0.187 (13.205) (0.000) 0.504

Table 3.14: Results obtained varying the parameter wR, wU , wP in Equation.3.5, where
each column represent the value of different performance metric and TOPSIS score

3.4.2 Experimental Results and Discussion

In accordance with the experimental settings described before, there are in total 21 exper-

iments. In each experiment, the patient arrival streams are generated by the simulation

model with different independent variables as the input. Then, four scheduling methods

are used to create schedule plans for each patient. The depend variables are calculated

according to the final schedules that they output. With the obtained results, each hypoth-

esis is examined as follows.

Hypothesis 1

The first hypothesis states that SlotRkr can have a better performance than FCFS when
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the testing scenario best resembles the real environment in OSC. This testing scenario is

denoted as N − R and the performance of the heuristics method, SlotRkr and FCFS are

demonstrated in Table.xx.

Hypothesis 2

The second hypothesis states that SlotRkr can have a better performance than FCFS when

the average number of patients per week increases from normal level to extremely crowded

level. Therefore, I examined the test results of all the urgency levels with different crowd-

edness level. With a certain urgency level, whenever the crowdedness level increases (e.g.

from N to C and from C to EC), the absolutely difference between the scores obtained by

each method is calculated and shown in Table.3.15. From that table we can clearly ob-

served that when the crowdedness level increases, only SlotRkr has a negative absolutely

difference, indicating that the score is decreased as clinic becomes more crowded. It should

be noted that the score is calculated by the weighted values of each objectives, which is

optimal when it is minimised. Therefore, I do not reject Hypothesis 2.

Hypothesis 3

The third hypothesis states that SlotRkr can have a better performance than FCFS when

the urgency level of patients weekly demand increases from least urgent to most urgent.

Similarly, I examined the test results of all the crowdedness levels with different urgency

level. Following the same steps described above, I generate a new table from the exper-

iments results as shown in Table.3.16. Read it from top to bottom, we can see that...

Therefore, I do not reject Hypothesis 3.
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Urgency level
Absolutely Difference of Score

Heuristics SlotRkr FCFS
N→C C→EC N→C C→EC N→C C→EC

xLG2 5.71% 1.76% -1.39% -1.41% 5.10% 1.27%
LG3 5.62% 1.94% -0.92% -1.36% 4.96% 1.39%
HG1 5.62% 1.94% -0.92% -1.36% 4.96% 1.39%
R 5.62% 1.94% -0.92% -1.36% 4.96% 1.39%

xHG3 5.98% 1.61% -1.00% -1.20% 5.33% 1.09%
HG2 5.62% 1.94% -0.92% -1.36% 4.96% 1.39%
xLG1 6.48% 1.46% -0.75% -1.60% 5.85% 0.88%

Table 3.15: Results obtained by varying the crowdedness levels with fix urgency level

Urgency changes
Absolutely Difference of Score

N C EC
H S F H S F H S F

LG1 → HG2 1 2 3 1 2 3 1 2 3
HG2 → HG3 1 2 3 1 2 3 1 2 3
HG3 → R 1 2 3 1 2 3 1 2 3
R→ HG1 1 2 3 1 2 3 1 2 3
HG1 → LG3 1 2 3 1 2 3 1 2 3
LG3 → LG2 1 2 3 1 2 3 1 2 3

Table 3.16: Results obtained by varying the urgency levels with fix crowdedness level
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Chapter 4

Conclusion and Future Work

In this chapter, the main contributions of all previous chapters are first summarised in

the section 4.1. In that section, the problem background as well as the motivations and

objectives of this thesis are briefly reviewed, followed by a summary of reviewed literature.

Finally, the contributions of proposed solution to the problem are listed. In section 4.2,

the future direction of research is proposed.

4.1 Summary of Contributions

This thesis focuses on the multi-stage online scheduling problem, which remains a key chal-

lenge in the prostate cancer pathway faced by many hospitals. Patients’ random arrival

process introduces uncertain factors that could largely affect the efficiency of scheduling.

Different resource calendars are maintained by different departments and the coordination

between the timeslots provided by them is essential. Furthermore, an online schedule re-

quires the scheduling system to dynamically consider the status of incoming patients and

the available resource when making schedule, making this problem even more challenge.

For a better understanding of the background of the problem investigated in this thesis,

the available literature on outpatient scheduling is classified according to the environment

they deal with, different characteristics of the pattern of patient arrivals, service times

and preferences of patient and provider, and the performance measures they considered.

Also, methodologies in literatures are categorised into three types: analysis, simulation

and demand estimation. The advantages and limitations are discussed along with the cor-

responding literatures and the solution in this thesis follows a simulation methodology.
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In Chapter 3, an detailed description about the problem is first demonstrated. With a

fully understanding of the background of the problem, the key challenges are first identified

as follows: i) each patient has a different and independent start date of pathway when they

are referred to PAH by their GP and with the same maximal accepted length of pathway

set by NHS UK, each of them will have a different due date of pathway; ii) patients’ arrival

process is random and the number of patients arriving per week is not determined. Then,

importance events during scheduling process are classified and mathematical represented

as Sets and Variables in Table.3.1 and Table.3.2, respectively. At the end of section 3.1, a

formal definition of Multiple Examinations Scheduling Problem (MESP) is given and three

reasonable assumptions about it are made to refine the focus of this problem.

The main contribution in Chapter 3 is to present a comprehensive framework to ad-

dress the Multiple Examinations Scheduling Problem (MESP). One important part of this

framework is the simulation model which captures the randomness in the patient’s arrival

process. By analysing the historical patient record from 2017 to 2018 provided by PAH, a

Poisson distribution and three beta distributions are constructed to model the randomness

in patient’s arrival process. To be more specified, I first uses Poisson and Normal distri-

bution to simulate the weekly patient arrivals. With a Chi-Square Goodness-Of-Fit test,

I concluded that both distributions can simulate the real distribution with a 95% confi-

dence and Poisson distribution is finally used. The other important work in this section

is to predict the distribution of patients’ arriving day, which is the day between patient’s

referral date and the first appointments date. By first categorising the arriving days into

three groups, three beta distributions are constructed with the MLE mean and the stan-

dard error estimated through bootstrapping. Then, the arriving days in each group are

modelled by three linear regression models. The advantages of this simulation model is

that all these parameter used in the simulated distributions can be further adjusted to

simulate different environment, which can be further used to generate experimental data.

The main limitation is that original data set that the linear regression model based on is

not big enough to ensure a generalised result. Therefore, the simulated patient streams

may highly resemble the historical data.

The other key part in the framework is the multi-agent system that designed to model

the activities between patients, department and scheduler staff in the clinic. Similar to [59],
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patient agent and department agent are developed. Patient agent is responsible for ex-

tracting schedule-related information from patient’s record; department agent maintains a

resource calendar of the timeslots for each examinations. Additionally, I create a sched-

uler agent which can make combinational schedule plan for two examinations. The main

contribution in this part is the development of two scheduling methods that can be used

by scheduler agent to make plan: the heuristics method and a cost-based method, called

”SlotRkr”. With the heuristics method, the optimal scheduling can be achieved during

the scheduling horizon as it uses future information when making schedule plans. Even

though it is not realistic in practice, it provides a transferring probability with respect to

each planning window for SlotRkr. With that probability, SlotRkr aims at dynamically

calculating the cost for combinational timeslots and yielding the one with lowest cost. As

one of the advantages, the design of components in the cost function is intuitive as it con-

siders the current resource calendar and predicts future demands, which mimics human

schedulers’ consideration when they need to trade-off between the risk of no early timeslot

available for urgent patients and the waste of timeslots if they are reserved and not being

used. However, the limitation may remain in the inaccurate simulation of real situation as

the data size is too small to find a generate solution.

Finally, a series of experiments are carried out to test the performance of each schedul-

ing method under different testing scenarios. Test data, or the simulated patient streams

during a certain scheduling horizon, is randomly generated by the simulation model and

the parameters of the model are considered to be independent variables, which are carefully

controlled to simulate different testing scenarios. Depend variables include the overdue rate

considering a maximal accepted pathway length (21 days) and a good practice pathway

length (14 days) set by NHS UK and PAH, respectively. Apart from that, other factors,

including overtime rate, average pathway length and machine utilisation rate, that may

indirectly reflect the goal are also considered. The values of extraneous variables are se-

lected in a way that their impact to the results is minimised. Result of such experiments

shows that the hypotheses 1 and 2 is not rejected.
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4.2 Future Work

The future research directions inspired by this work remains in two aspects. First, the

components in the cost function in SlotRkr can be further improved to i) consider more

complex objectives, such as patients’ preference discussed in [22,59]; ii) model the consid-

ered objectives in a more accurate way, such as using the non-linear cost function instead

of a linear one. Also, the multi-agent system can be designed in a more efficient way to

increase the scheduling speed, which could be an important indicator in an online schedul-

ing system.

The second aspect focuses on adopting more methodologies to schedule. For example,

resource reservation is proved to be useful in when patients are classified into different

categories [48]. Re-scheduling or conflict resolution after an initial scheduling are common

methods in a multi-agent system [14,59].
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Appendix A

TOPSIS

Its first step is to find the ideal and negative-ideal configuration, which achieve the best

and worse objective functions among all the configurations. Then, it calculate a TOPSIS

score of each configuration by measuring the distance between the ideal and negative-ideal

configuration. In order to be more self-maintained, I briefly describe the calculation of

such score below.

Let’s assume there are in total M objective functions and N configurations, and the

average value achieved for objective function m with configuration n in several simulations

is denoted as vnm, which are stored in a decision matrix of M columns and N rows. Let a

m length vector stores the weight of each objective function, denoted as εm. Therefore, a

normalised decision matrix can be calculated as

v
′

nm = εm
vnm√∑N
n′=1 v

2
n′m

(A.1)

where the weight εm are user-defined such that
∑M

m=1 ε = 1. The ideal and negative-ideal

configuration for objective function m are the the largest and smallest values in the ma-

trix, denoted as v
′?
m and v

′−
m , respectively. Therefore, the distances between each values in

matrix and the ideal and negative-ideal values can be calculated as

D?
n =

√√√√ M∑
m=1

(v′nm − v
′?
m)2 (4.4)
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and

D−n =

√√√√ M∑
m=1

(v′nm − v
′−
m )2 (A.2)

, respectively. Finally, the TOPSIS score of configuration n is given by

Dn =
D−n

D?
n +D−n

(A.3)
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Appendix B

Statistical Results

Experi
-ment

Avg. ODM Avg. ODG Avg. OT Avg. L Avg. U Score
O S F O S F O S F O S F O S F O S F

N − LG1 2.29 3.17 4.23 29.07 39.55 30.42 7.64 10.84 7.64 12 13 12 98.36 94.96 98.36 1.98 2.27 1.99
N −HG2 2.03 2.98 3.99 29.66 39.96 31.29 6.6 9.46 6.6 12 13 12 98.42 95.04 98.42 1.99 2.27 2.0
N −HG3 2.05 3.03 3.95 30.26 40.17 31.24 7.84 10.99 7.84 12 13 12 98.51 95.14 98.51 2.0 2.27 2.0
N − R 2.12 3.03 3.98 28.18 38.88 29.59 6.91 9.77 6.91 12 13 12 98.35 94.98 98.35 1.97 2.25 1.98
N −HG1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
N − LG3 1.54 2.38 3.1 26.79 38.04 28.68 7.56 10.87 7.56 11 13 11 98.29 94.75 98.29 1.94 2.24 1.95
N − LG2 2.3 3.17 4.11 26.8 37.69 28.51 7.8 11.11 7.8 12 13 12 98.32 94.78 98.32 1.95 2.24 1.96
C − LG1 3.29 3.56 4.88 39.64 39.87 35.51 13.89 15.76 13.89 12 13 12 99.66 97.53 99.66 2.11 2.25 2.11
C −HG2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
C −HG3 3.84 4.07 5.42 39.13 39.68 35.13 13.94 15.92 13.94 12 13 12 99.65 97.36 99.65 2.11 2.25 2.11
C − R 3.13 3.3 4.58 38.8 38.99 34.58 12.93 14.58 12.93 12 13 12 99.64 97.49 99.64 2.09 2.23 2.09
C −HG1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
C − LG3 2.25 2.59 3.75 37.3 38.38 33.74 13.61 15.64 13.61 12 13 12 99.61 97.28 99.61 2.07 2.22 2.07
C − LG2 3.19 3.38 4.59 36.13 37.48 32.71 14.27 16.29 14.27 12 13 12 99.58 97.25 99.58 2.06 2.21 2.06
EC − LG1 3.92 3.66 4.88 46.28 39.33 36.9 20.23 21.16 20.23 12 13 12 99.92 98.76 99.92 2.14 2.21 2.13
EC −HG2 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
EC −HG3 4.77 4.31 5.6 45.81 39.15 36.72 20.39 21.3 20.39 12 13 12 99.93 98.8 99.93 2.15 2.22 2.13
EC − R 3.73 3.51 4.73 45.09 38.23 35.86 20.66 21.57 20.66 12 13 12 99.94 98.81 99.94 2.12 2.19 2.11
EC −HG1 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
EC − LG3 22.82 2.75 3.91 43.88 37.43 34.84 20.44 21.39 20.44 12 13 12 99.92 98.73 99.92 2.1 2.17 2.08
EC − LG2 3.88 3.58 4.8 42.19 37.29 34.55 20.11 21.09 20.11 12 13 12 99.94 98.71 99.94 2.1 2.18 2.09
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